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Abstrsct. We examine perfect fluid solutions in general relativity. The pressure isotropy 
relation possesses a discrete symmetry in the derivatives of the metric functions. It is 
shown that a generalisation of Buchdahl's original transformation allows new physically 
reasonable solutions to be obtained from known solutions. An example is given. Previously 
noticed first by Buchdahl, and later by Glass and Goldman, this symmetry was thought 
to lead only to unphysical solutions. 

1. Introduction 

Several authors have examined the problem of obtaining static, spherically symmetric, 
perfect fluid interior solutions in general relativity. Even under these assumptions, 
analytic and physically reasonable solutions are difficult to come by. On the other 
hand, numerical techniques can be applied to obtain physically motivated solutions. 
These solutions are not always amenable to easy analysis, however. 

Some years ago, Buchdahl (1956) discovered that the Einstein equations for a 
perfect fluid possessed a discrete symmetry. This symmetry allowed a new solution 
to be obtained from a seed solution by a transformation of the time-like metric function 
(the Buchdahl transformation). This transformation could be applied to any static 
perfect fluid solution. No differential equations had to be solved. Later Glass and 
Goldman (1978) also noticed the symmetry, but concluded as did Buchdahl that only 
unphysical new solutions resulted through its application. 

In this paper, we re-examine the use of the Buchdahl transformation (BT) and find 
that, if it is suitably generalised, it is possible to obtain physically reasonable new 
solutions through its application. We discuss the BT as applied to static, spherically 
symmetric, perfect fluid solutions. Since it is possible that all regular static perfect 
fluid solutions which can be matched to asymptotically flat vacuum solutions are also 
spherically symmetric, our restriction is not too severe. 

2. The Buchdahl transformation 

Buchdahl (1956) found that, given a static solution to the Einstein field equations for 
a perfect fluid 

(1) ds2 = goo dt2 + g,, dx' dx', 
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the reciprocal line element, given by 

ds2 = (goo)-’ dt2 + (goo)2gii dx‘ dx’, (2) 

was also a solution to the Einstein field equations for a perfect fluid. 
If the mass density, pot and the pressure, po ,  are the quantities associated with the 

solution ( l ) ,  then Buchdahl calculated the mass density and the pressure of the solution 
(2) to be 

Since it is generally believed that the mass density must be positive in order for a 
solution to describe a physically reasonable situation, and since perfect fluids are 
expected to exhibit only pressure and not tension, p o  and p o  will be positive if the 
solution (1) is to be physically relevant. Therefore, Buchdahl concluded from (3) that 
the mass density of the solution (2) is negative, eliminating (2) as a physically reasonable 
solution. It seemed that, given a physically reasonable solution (in the sense discussed 
above), the BT produced only an unphysical solution. 

If we intend to apply the BT in order to obtain new perfect fluid solutions appropriate 
for the interiors of any finite body (a neutron star, for example), it is clear that we 
must impose some boundary conditions on the metric. In § 3, we indicate one method 
(although not Buchdahl’s original approach) of ‘deriving’ the BT. We also demonstrate 
the impossibility of using the BT to obtain a perfect fluid satisfying the Lichnerowicz 
(1955) boundary conditions from another perfect fluid solution which also satisfies 
the Lichnerowicz boundary conditions. We find that the BT can be modified so that 
it becomes possible to obtain a new perfect fluid solution appropriate for the description 
of a finite body from a known solution of the same type. In addition, this modification 
allows one to obtain physically reasonable (p  > 0, p 3 0) new solutions from known 
physically reasonable solutions. 

p = (goo)-2Po, p = -(goo)-2(Po + 6 P o ) .  (3) 

3. Field equations 

We begin by examining the non-vacuum, spherically symmetric, static Einstein 
equations for the line element of the form 

ds2 = e”  dt2-(1 da2 ,  (4) 
d a 2  = dr2 + r2(de2 +sin2 8 d42), ( 5 )  

where Y, CP are functions of r only. In order that the interior metric joins properly 
(Lichnerowicz 1955) to the exterior Schwarzschild solutiont 

4 ds2=(1+MIZI) 1 - ~ / 2 r  d t 2 - ( l + %  d a 2  

at the boundary of the body, r = a, we will require (’ d/dr) 

@(a) = M/2a, 

v(a)=21n (1-M/2a)-21n (1+M/2a) ,  (7) 

v’(a) = (2M/a2)(1 -M2/4a2) - l .  

” ( a )  = -M/2a2, 

M is the mass ofathe body as measured by a distant observer. 
f For a recent discussion of boundary conditions in general relativity see Bonnor and Vickers (1981). 
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The field equations are (Tolman 1962) (units 87rG = c = 1) 

T: = -4(i + ~ ) - ~ ( w  + 2 ~ 1 ~ 1 ,  

The energy-momentum tensor of a perfect fluid in this case can be written as 

T: = P ,  (9a 1 
(9b)  -T1-  3 

Tf = O  for i # j ,  (9c) 

1 --T2 =-T3 = p ,  

where p is the mass density and p is the pressure. 
From the isotropy of pressure relation (9b), and equations (8b) and (8c), we have 

(10) 
Y’2 Y’ 2Wv’ 2@” 6@” 2@’ 

2 4 2r I + @  I + @  (I+@)* r ( ~ + @ ) ’  
-+ =-- +-+- 

We will now show that equation (10) is invariant under a discrete symmetry; i.e., 
under a certain transformation of Y and @ the isotropy of pressure, equation (lo), is 
retained. 

If we now make a change of dependent variables 

$Y’ = i (T  + S ) ,  

2@’/(1 +@) = $(T - S ) ,  

equation (10) becomes 

T’ - T/ r - $T2 + ST + $S2 = 0. 

It can be seen immediately that although equation ( 

(13) 
) is a Riccati equation in T, it 

is an algebraic (quadratic) equation in S.  Therefore, there will exist two solutions S1, 
S2 for every T. Suppose that (SI, T) is a known solution to Einstein’s equations for 
a perfect fluid. Then (S2 ,  T) is another perfect fluid solution where 

S2=-(S1+2T). (14) 
In order to see the equivalence of equation (14) and Buchdahl’s result for equations 
(l),  (2) and (3), we substitute equations (ll), (12) into equation (14) and integrate. 
We obtain 

( 1 + @ ) ~ = ( 1 + @ ~ ) ~ e ~ ” o ,  (15) 

, (16) 
where YO, Q0 are the ‘metric functions’ of the old (S1, T) solution. Thus the result 
obtained here is equivalent to the Buchdahl result. Another method of obtaining the 
BT using the invariance of the Lagrangian is given in the Appendix. 

ey = e-uo 

Suppose that the spherically symmetric line element 

ds2 = A dt2 - B d v 2  (17) 
is a solution to the Einstein equations for a perfect fluid. Further suppose that at 
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some finite radius, r = a, the interior solution (17) is to be matched to the vacuum 
Schwarzschild solution 

4 ds2 = ( 1-M/2r +M12r) dt2 - (1 +3 du2,  

The Lichnerowicz boundary conditions applied to the time-like component of the 
metric tensor are 

Next let us apply the BT to the solution (17). Application results in the following 
perfect fluid solution 

ds2 = A-’ dt2 - A 2 B  da2 .  (20) 

The Lichnerowicz boundary conditions applied to the time-like component of the 
metric tensor of the new solution are 

=-F(l+g)(l-z) M -3 . 
dr r = a  

It is evident that only if M = 0 can the same function, A, satisfy both sets of boundary 
conditions. This, of course, represents Minkowski space-time and is of no interest here. 

Since the field equations are second-order differential equations, the solutions vo, 
Qo will in general contain two arbitrary constants. These constants are determined 
only after application of the boundary conditions. The transformation (14) preserves 
the functional form of the vo, a0 functions. However, the values of the arbitrary 
constants will not remain the same. These (different) constants will be determined 
only after applicaton of the boundary conditions to the new solution (15) and (16). 
To ensure that this point is clear, we will partially work through an example. 

In a perfect fluid solution given recently by Bayin (1978) the line element is 

ds2 = (Ar2 + B)’ dt2 - (Cr2 + D>-6 d u 2  (22) 

where A, B, C, D are constants. 

tensor yields 
Application of the boundary conditions to the time-like component of the metric 

A = (M/2a3)(1 -2M/a)-’/’, 

B = (1 - 5M/2a)(l- ~ M / U ) - ” ~ .  

After imposing the BT upon the solution (22) 

goo = ( ~ r ’ +  B)-’. 
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Again, applying the boundary conditions gives 

Particularly important is the change in sign in the constant A. 
Since, as has been shown above, some of the constants involved in po and po will 

almost certainly change sign, it is possible that po and po will change sign also. This 
would allow p and p in equation (3) to be positive. In 6 4 we give such an example. 

4. Example 

As an example, we will apply the method to the incompressible fluid Schwarzschild 
solution. In this case (Cl, C2, A are constants) 

4r -- 2Clr 2Clr s* = T =  c1 r2 + c2 ’ C1r2+C2 r2+A’  

Using equations (15) and (16) and applying the boundary condition (7) 

( 1 + ~ ) ~ = ( 1 - ~ )  M 2  
a 

The components of the energy-momentum tensor are 

(29) 
4(1 + 2Mr2/a3 - 2M/a -M2r2/4a4) 

a (1 + M / a  -Mr2/a3-M2r2/4a4)5 ’ 

Upon examination of the expressions (27), (281, (29) and (30), the example solution 
is found to exhibit the following properties. 

(1) The time-like component of the metric tensor, e”, is zero if M / a  = 2. This 
would give rise to an event horizon. 

(2) Likewise, the space-like component of the metric tensor, (1 +Q)4, is zero if 
M/a = 2. 

(3) The mass density, p, is non-negative at the centre if M / a  si. p is singular if 
M / a  = 2. Also p ’ a  0. Thus the density is an increasing function of r. As a con- 
sequence, if p 2 0 at the centre, it will be non-negative everywhere. The requirement 
that p 2 0 is called the weak energy condition. The fact that p 2 0  almost certainly 
means that the solution is unstable under perturbation. 

(4) p ( r  = a )  = 0. Thus the body has a finite boundary without the introduction of 
surface shells. p is singular if M / a  = 2. p is a decreasing function of r. p a 0 throughout, 
also, at least as long as M / a  < 2. 

(5) p a p  everywhere in the interior if M/a s 5.  Since in addition for M / a  s f both 
p and p are positive, the dominant energy condition is satisfied for these values of Mla.  
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(6) Another energy condition, the trace condition TE = p - 3p P 0, is satisfied if 
M / a  s $. The trace condition is evidently more stringent than either the weak or the 
dominant energy conditions. 

It would seem that the only unphysical property of the example solution is that 
the mass density is not a decreasing function of the radial coordinate. This may be 
due to the choice of the constant density solution as a seed solution. 

5. Discussion 

Due to their nonlinearity, Einstein's equations in the presence of matter have yielded 
only a handful of analytic, physically reasonable solutions. Even the simplifying 
assumptions of spherical symmetry and static perfect fluid sources have not increased 
the tractability of the equations significantly. Using the Buchdahl transformation as 
described in this paper, it is possible to obtain a new solution for every known perfect 
fluid solution. The resulting new solutions should be useful in gaining greater insight 
into the theory. 
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Appendix 

Perhaps a more elegant manner of obtaining the Buchdahl transformation is presented 
heret. Given the line element 

the Lagrangian density for a perfect fluid is 

2 = &I? +F,iFi /2F2 - 2p/F),  ,i = a/axi, (-42) 

where the bars denote quantities associated with the three-metric G. I? is the Ricci 
scalar of this three-metric, &, and is the determinant. The Lagrangian density is 
form invariant under the transformations 

as can be readily verified. Since the field equations are obtained from the Lagrangian 
via application of a variational principle, the field equations will also be form invariant 
under the transformation (A3). The forms of the solutions of these field equations 
will then also remain unchanged. 

t For a more detailed discussion of Lagrangian invariance transformations see Kramer et a1 (1980). 
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